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A uni versal equation of state for the fluid of hard bodies of an arbitrary shape is proposed. New 
Monte Carlo data of the hard sphere system are published and the existing pseudoexperimental 
data for hard spheres, spherocylinders and dumbells are critically reviewed. 

The prerequisite of success of the present perturbation theories of real liquids (for the survey 
see e.g.! ,z) is the exact knowledge of thermodynamic behaviour of si mple model systems with 
repulsive interactions, i.e. the systems of hard molecules. These systems represent as well an excel­
lent zeroth approximation when describing the structure of realliquids3 ,4 and that is why they 
have been a ttracting interest of theorists all the time. Apart from a number of theoretical and 
semi-empirical works (e.g.z,s and references therein), great attention was paid to the pseudo­
experimental study of behaviour of the systems of hard spheres, convex bodies (prolate sphero­
cylinders) and fused hard spheres (homo- and heteronuclear dumbells). The pseudoexperiments 
based on the Monte Carlo (MC) or molecular dynamics (MD) methods represent today a widely 
spread tool for an "exact" determination of behaviour of any system with given interparticle 
interactions and serve consequently for verifying theoretical hypotheses. However, the fact is taken 
into· account very rarely that the pseudoexperimental data have the character of classical experi­
mental data, i.e. they are subject to random errors and in some cases even to systematic ones 
resulting from unsuitable algorithms used and the like. The immense complexity of the simula­
tions and their demands on computing time (and the costs connected with) make the possibility 
of the error determination of pseudoexperiment difficult. Therefore the reliability of the published 
data can be judged mostly indirectly on the basis of their compatibility with other existing facts. 

The aim of this work is twofold: a) To propose a universal equation of state allow­
ing to describe the P-V-T behaviour of the system of hard bodies of an arbitrary 
shape simply and at the same time sufficiently accurately. b) On the basis of such 
an equation and the other known facts to assess critically all the hitherto published 
MC and MD data on the P-V-T behaviour of systems of hard spheres (hs), prolate 
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spherocylinders (sc) and homonuclear dumbells (db) and to find ranges of their 
applicability. The method a) is based on a semi-empirical equation of the Carnahan­
Starling type and starts from the knowledge of first four virial coefficients of the 
system. Where the virial coefficients were not known from the literature they were 
calculated in this work . 

THEORETICAL 

One of the methods how to verify the correctness of pseudo experimental data is to 
find generally valid relations which must be satisfied by these data. In our previous 
papers we presented two conjectures binding together the compressibility factors of 
hard spheres, dumbells and spherocylinders: 

1) Considering a system of N hard dumbeIls (fused hard spheres of a diameter (J 
with centres L(J apart, 0 ~ L ~ 1) confined to a volume Vthen it holds 

(1) 

In Eq. (1) all three compressibility factors are compared at the same density (](J3, 
(] = NjVand eq.hs denotes hard spheres of the same volurrie as that of the dumbells 
studied and sc stands for the spherocylinders of breadth (J and length (L + 1) (J. 

2) If SPT denotes the results following from the scaled particle theory 6 - 8 then 
it holds both for spheres and dumbells and spherocylinders : 

(2) 

Eq. (1) is not the only equation of this kind. It is possible to show9 that there exists 
a whole family of relations analogous to Eq. (1) in dependence on the reducing volu,­
me. For instance, if the dumbells and spherocylinders are compared at the same pack­
ing fraction y (y = (] x volume of a molecule) then it holds 

(3) 

Eqs (1)-(3) represent a very useful tool especially for the region of low and medium 
densities and for the dumbells not too different from spherocylinders. In the other 
cases they yield a good first estimate, 

The best way how to compare different sets of data for the same system is to have at 
disposal a good equation of state. Since, however, the final validity and accuracy of 
the equation of state must be proved by pseudoexperiments, such an equation should 
be based on the facts independent of the pseudoexperiments. The immediate in­
formation on thermodynamic behaviour of an arbitrary system of interacting par­
ticles is yielded by virial coefficients which are, moreover, mostly easily available. Just 

Collection Czechoslov. Chern. Commun. [Vol. 441 [19791 



Thermodynamic Properties of Pure Hard Sphere 3557 

the knowledge of virial coefficients can be used advantageously to develop semi-empi­
rical equations of state which, unlike the classical vi ria! expansion (4), 

(4) 

hold even for medium and high densities. 

The semi-empirical equation, if desired to be simple and simultaneously sufficiently 
accurate, cannot be constructed arbitrarily but its functional form must reflect the 
essential theoretical knowledge. Starting from the well-known facts, we postulate, 
that the P- V- T behaviour of the system of hard particles of an arbitrary shape can be 
described with sufficient accuracy by an equation of state of the form 

where Ii are the numerical constants determined by the first four virial coefficients 

That is to say, Eq. (5) in connection with Eq. (6) reproduces accurately the first four 
virial coefficients. A support for this statement can be found in the following facts: 

a) By using the method of the scaled particle theory6-8 the theoretical equations 
of state were derived both for the hard sphere system and for the db and sc systems 

in th,e form 

(7) 

Moreover, from the solution of the Percus- Yevick equation for hard spheres10 

it follows that the compressibility equation of state has as well the form of Eq. (7). 
Therefore it is to be expected justifiably that a good semi-empirical equation shall 

include a term of the type (7). 

b) Trying to find an accurate equation of state for the entire density region, Carna­
han and Starling!! (CS) approximated the known virial coefficients of hard spheres 
by a recurrent integer series and obtained the equation 

(8) 

In analogy to this equation Boublfk l2 then improved in a pure empirical way the 
SPT equation (7) for hard convex bodies by adding the term const x y3j(1 _ y)3. 
Thus obtained equation was also applied with success to the dumbell ftuid!3.14. 

c) The form of the equation of state (5) and its unique connection to the exact values 
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of vi rial coefficients formed the starting point in our previous work 15. The result was 
the hitherto best-known analytical equation for prolate spherocylinders. 

Eq. (5) can be formally improved by adding the terms of the form!nyn-I/(l _ y)3, 
n ~ 5 which comprise the effect of higher virial coefficients. The main reason for 
ch;-osing Eq. (5) consists in the fact that for non-spherical molecules it is difficult 
to obtain higher virial coefficients. From a general analysis it is to be expected that 
Eq. (5) will yield excellent results for low and medium densities while in the region 
of the highest densities, it will slightly overestimate the actual compressibility factor. 

RESULTS AND DISCUSSION 

Hard Spheres 

The hard sphere system is the simplest system of hard particles which has been studied 
intensively since 1954 (ref. 16

). Older data were mostly obtained using small number 
of particles and from comparatively short chains and therefore are unreliable (for 
review see 17

) . The most often cited data are those due to Barker and Henderson 18 

from 1971 and new data of Adams l9 from 1974 obtained on using both the NVT 
and IlVT ensemble. For low densities, these data are essentially identical, in the region 
of medium and higher densities, however, they exhibit surprisingly large scattering. 
In Fig. 1, the difference (P/(}kT)MC - (P/(}kT)CS is plotted in dependence on density. 

02,----,-----,---,--------,- -r-.---, 

MP!fkT! 

FIG. 1 

Density Dependence of the Deviation of Theoretical (curves) and Pseudoexperimental (circles) 
Compressibility Factor of Hard Spheres from the Carnahan-Starling Equationll 

1 Le Fevre equation23 , 2 Ree-Hoower equation22 , 3 Hall equation21 , 4 Woodcock equa­
tion 24, 5 this work, Eq. (5). Data: 0 Barker and Henderson18 , 8 m Adams91 , • this work. 
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It can be seen that the data of Barker and Henderson 18 are systematically lower than 
the CS equation (8) and have great scattering. Similar large scattering but onto both 
sides from the CS equation show the Adams data from the IlVT ensemble, the data 
from the NVT ensemble have a smaller scattering. 

The reasons of such a large scattering of data can be as follows: a) The equation 
of state is determined by a radial distribution function at a contact point and this 
value, g*, must be found by extrapolating the data. Tht' effect of extrapolation on 
the value of g* we studied on the Barker and Henderson data 18 on using various 
correlation procedures. The analysis of the results showed a relative insensitivity of 
the contact value g* on the procedure used. It is possible to say that the error due 
to extrapolating does not exceed 0'25%. b) The simulations are carried out with 
a small set of particles. Except one value of Adams, all the others were obtained from 
the ensemble of 108 or 256 particles. There exists a recommendation how to correct 
the results for the infinitely large ensemble, this correction has not, however, a suffi­
cient theoretical justification18

. Another possibility is to simulate the behaviour of 
much greater ensemble, where the incidental corrections are negligible. This was one 
of the reasons why the ensemble of 864 spheres was studied in detail by the MC 
method. The detailed description of the simulations together with the values of the 
radial distribution function for the range of distances (0", 4u) is given in the work20

• 

In this work, the values of the compressibility factor for eight densities (lu3 within 
the range (0'3,0'8602) are given in Table 1. Considering that these data were obtained 
by means of such a large ensemble of particles, they exhibit considerably smaller 
scattering in comparison with earlier data (Fig. 1). We believe that these data are 
the most accurate data which are presently available. 

As to the theoretical description of the hard sphere fluid the CS equation (8) is 
most often used. Besides, some attempts have been made all the time to develop more 
accurate equations; let us name here at least HaU21

, Ree and Hower22, Le Fevre23 

and Woodcock24 . The assertions that some of these equations is better than the 

TABLE I 

Monte Carlo Data of the Compressibility Factor of Hard Spheres 

0·30 
0'40 
0·50 
0·60 

P/(!kT 

1·96 ± 0·01 . 
2'52 ± 0·01 
3·26 ± 0·01 
4'28 ± 0·01 . 

Collection Cz~choslov . .chem. Comll!un. [Vol. 441 [1979] 

0'70 
0'7573 
0 '80 
0 '8602 

P/C!kT 

5'70 ± 0·02 
6'81 ± 0·02 
7·75 ± Q.·03 
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other seem to us, however, to be unjustified at present. The MC values of the com­
pressibility factor do not form a smooth curve in the region of higher densities but 
are scattered in a certain band_ Taking into account in addition the unavoidable 
experimental errors, we get a region in which, in all probability, the real value of 
(P/ekT) of hard spheres lies_ As it can be seen from Fig_ 1, the values of the compressi­
bility factor of all the equations mentioned lie in the region given_ As for Eq_ (5) 
then this is in an excellent agreement with the pseudo experimental data up to the 
densities e(13 '" 0-7_ For higher densities it shows systematically, as it can be excepted, 
small positive deviations_ 

Spherocylinders 

The spherocylider is a cylinder of a length equal to La capped at both ends by hemi­
spheres with radius (1/2_ The second virial coefficient of prolate spherocylinders is 
known exactly in the closed form2s 

B2 = 1 + 3(L + 1)(L + 2)/(3L + 2) _ (9) 

All the higher hitherto published virial coefficients were then obtained by numerical 
integration using Monte Carlo method and are summarized in Table II_ For a number 
of eccentricities, two independently obtained values of third and fourth vi rial coef­
ficients are available which agree with each other (except two cases) in limits of nume-

TABLE II 

Virial Coefficients of Hard Spherocylinders 

L B2 B3 (ref_) B4 (ref_) Bs (ref_) 

0-2 4-046 10-19 ± 0-05 (ref_ 5) 19-47 ± 0-35 (ref_5) 
0-4 4-150 10-64 ± 0-05 (ref_ 39) 19-26 ± 0-30 (ref_39) 
0-6 4-284 11-30 ± 0-05 (ref_ 5) 21-35 ± 0-40 (ref. 5) 
0-8 4-436 11-84 ± 0-06 (ref.39) 21-50 ± 0-30 (ref.39) 
1-0 40600 12-54 ± 0-07 (ref_4O) 22-34 ± 0-55 (ref.15) 

12-34 ± 0-03 (ref_41) 22-50 ± 0-25 (ref.4I) 31-9 ± 1-3 (ref_4I) 

1'5 5-038 14-30 ± 0-07 (ref_4O) 26-06 ± 0-65 (ref.15 ) 
2-0 5-500 16-27 ± 0-08 (ref_4O) 29-15 ± 0-73 (ref.15) 

16-20 ± 0-03 (ref.4I) 28-00 ± 0-30 (ref_4I) 36-8 ± 1.-5 (ref.4I) 
3-0 6-455 20-48 ± 0-10 (ref.4o) 

20-43 ± 0-04 (ref.4I) 31-90± 0-32 (ref.4I) 39-7 ± 1-6 (ref_4I) 
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rical errors; it is recommended, however, to use the data of Monson and Rigby2 6 
for they were obtained by using a much longer integration chain . 

The P-V- T behaviour of the systems of spherocylinders was simulated by the Me 
method for L = 1·0 and 2·0 (ref.26 - 29) and by the MD method for L = 1·0 (ref. 30

). 

All the data given in Table III seem to be in a good mutual agreement. Besides the 
pseudoexperimental data, Table III presents also the values of the compressibility 
factor from Eq. (5) and from the Nezbeda equation 15 

(P/ekT) = [1 + (3a - 2) y + (a 2 + a-I) y2 - a(5a - 4) y3]/(1 _ y)3, 

a = (L + l)(L + 2)/(3L + 2). (10) 

TABLE III 

Compressibility Factor of Hard Spherocylinders 

P/(lkT 

L y 

simulation (ref.) Eq. (5) Eq. (10) 

1·0 0·20 2 '69 (ref. 30) 2 '67 2'67 
2·65 ± 0·02 (ref. 26) 

0·2454 3·23 ± 0·12 (ref. 29) 3-40 3·39 
3·37 ± 0·04 (ref. 26) 

0·30 4-48 ± 0·07 (ref.26) 4·58 4·56 
0·3351 5·53 ± 0·14 (ref.27) 5·59 5'55 
0·3879 7·57 ± 0 ·26 (ref.27) 7'64 7·53 

0-40 8·18 (ref. 30) 8·22 8·10 
8·20 ± 0·10 (ref. 26) 

0-4460 10·74 ± 0·24 (ref.27) 10·98 10·74 

0'50 15·20 ± 0 ·20 (reI. 26) 15 ·76 15·28 

0·5096 16·80 ± 0·90 (ref.27) 16·85 16·31 

2·0 0·20 3·07 ± 0·03 (ref. 26) 3·06 3·06 

0·2676 4·53 ± 0·18 (ref.29) 4 '49 4 '49 
0·30 5'40 ± 0 ·10 (ref.26) 5'41 5-40 

5'40 ± 0·13 (ref.28) 
0·3058 5·52 ± 0·23 (ref.29) 5·59 5·59 

0·3474 6'84 ± 0·30 (ref.29) 7·13 7·]3 

0·35 7·17 ± 0 ·11 (ref. 28) 7·24 7·23 

0·3927 8·99 ± 0-40 (ref.29) 9·33 9·32 

0·40 9'60 ± 0·10 (ref.28) 9·75 9·74 

0'45 13-00 ± 0·16 (ref. 28) 13·27 13·24 

0·50 18·00 ± 0 '40 (ref.28) 18·30 18·25 
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It is seen that for L = 2'0, the both analytical results are essentially undistinguish­
able. For L = 1'0, Eq. (5) yields higher values, which is caused by an inaccurate 
representation of the fourth vi rial coefficient by Eq. (10). In any case, Eq. (5) must be 
preferred for it results from exact values of virial coefficients whereas the Nezbeda 
equation is based on their approximate analytical fitting. 

The comparison of Eq. (5) with the simulation data shows almost everywhere an 
excellent agreement. For L = 2·0 there exists a small discrepancy for y = 0-40 and 
0-45, which is most probably due to partly the surprisingly low numerical error 
reported (1% for these two very high densities) and partly a slight overestimation of 
results by Eq. (5) in this region. For L = 1'0, the only problematic value is the com­
pressibility factor for y = 0·5. With regard to the perfect agreement of Eq. (5) with 
the simulation data in all the other cases we are in doubts about the MC value 
mentioned. 

Homonuclear Dumbells 

Similarly to spherocylinders, also for dumbells the second vi rial coefficient is known 
exactIy31 .32, whereas the third and fourth ones are obtained by numerical integration. 
The vi rial coefficients for all types of dumbells, for which the MC or MD data exist, 
are summarized in Table IV. 

The thermodynamic behaviour or homonucIear dumbells was studied by a number 
of authors (Freasier33 ,34, Freasier and coworkers3s , Aviram and coworkers36, 
Streett and Tildesley37 and Streett3S

). The first approximate of the behaviour of the 
db fluid is yielded by Eqs (1)-(3). In foregoing papers we pointed out the possibility 

TABLE [V 

Virial Coefficients of Hard Homonuclear Dumbells 

L B2 B3 (ref.) B4 (ref.) B5 (reL) 

0·05 4·004 10·01 ± 0·03 18·40 ± 0·08 
0·10 4·014 10·13 ± 0·03 18·84 ± 0·30 
0·20 4·055 10·23 ± 0·05 (ref. 5) 19·43 ± 0'35 (ref. 5) 
0-40 4·213 10'95 ± 0·05 (ref.39) 20·35 ± 0·30 (ref.3 9 ) 

0·60 4·474 12·11 ± 0·06 (ref.39
) 22·98 ± 0·35 (ref. 39

) 

12·13 ± 0·03 (ref.34) 23·10 ± 0·07 (ref.34) 35·58 ± 0·45 (ref. 34) 
0·75 4·753 13'52 ± 0·05 26'26 ± 0·30 
0·80 4'866 14·04 ± 0'08 (ref. 5) 27'61 ± 0·50 (ref. 5) 
1·00 5-444 16·93 ± 0·25 (ref.35) 34'88 ± 0·50 (ref.35) 52·22± 1·05 (ref. 35) 
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that some data of Aviram and coworkers are in error; later on it was proved 38 that 
all the data in that work are erroneous and should be discarded. All the other data 
except the values for L = 0·10 from the work37 , satisfy the conjectures 1-3 and are 
summarized in Table V for L = 0'05, 0'20, 0·40 and 0·60. Moreover, the values of 
the compressibility factor calculated from Eq . (5) are as well presented in this table. 
The comparison of values in Table V proves that for L ~ 0-40 there exists a perfect 
agreement between Eq. (5) and the pseudoexperimental data. For L = 0'60, two and 
in some cases even three different values of compressibility factor are available. 
In all the cases with the exception of the highest density, there is again a perfect agree­
ment between the pseudoexperimental data and Eq . (5). For high densities, the 

TABLE V 

Compressibility Factor of Hard Homonuclear Dumbels 

P/(!kT 
L y 

simulation (ref.) Eq. (5) 

0·05 0-4084 7'50 ± 0·20 (ref.J7) 7-41 
0·20 0·1047 1· 57 ± 0·03 (ref. 3 8) 1·56 

0·1571 2·03 ± 0·04 (ref. 38
) 1·99 

0·2094 2·61 ± 0·05 (ref. 38
) 2·56 

0·2618 3·38 ± 0·08 (ref. 38
) 3·35 

0·2714 3·55 ± 0·08 (ref. 38
) 3'52 

0·3142 4'50 ± 0·09 (ref. 38
) 4-44 

0·3665 6·02 ± 0·12 (ref. 38
) 6·00 

0-4189 8·26 ± 0·17 (rer.38
) 8·26 

0·40 0'4084 8·10 ± 0·25 (ref. 37 ) 8·00 

0·60 0·1047 1·64 ± 0·01 (rer. 33
) 1·63 

0·1877 2 '46 ± 0·02 (ref. 34
) 2-48 

0·2094 2'80 ± 0·06 (ref.38
) 2'78 

2·84 ± 0·03 (rer.33
) 

2·76 ± 0·02 (ref.34
) 

0·2815 4·14 ± 0·04 (ref.34
) 4·l3 

4·04 ± 0·02 (ref. 34) 

0·3141 5·02 (ref. 33) 4·97 
4·95 ± 0·05 (ref.34

) 

4·86 ± 0·04 (ref. 34
) 

0'4189 9-42 ± 0·19 (ref.38
) 9-44 

9·24 (ref.33
) 

0-4691 12·95 ± 0·26 (rer.38
) l3·22 

12·70 ± 0·16 (ref.34
) 
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Freasier data33
,34 seem to be systematically lower. Analogous situation exists also 

for L = 1·0 where, unfortunately, there is only one set of data 3 5. The data of Freasier 
and coworkers3 5 lie always below the values of Eq. (5) and this difference increases 
with increasing density. The difference for (1(1'3 = 0·45 is approximately 15%, which 
strongly exceeds the assumed positive deviation of Eq. (5). There remains a question 
whether this discrepancy is a consequence of the trend observed with the data of 
this author already for L = 0·60 or of the inaccuracy of Eq. (5) for L --+ 1 or the com­
bination of both effects. The definitive answer to this question can be provided only 
by new simulation data. 

The agreement between the compressibility factor given by Eq. (5) and the majority 
of simulation data for three systems of different hard particles proves the justification 
of its use to describe the thermodynamic behaviour of these systems. To prove even 
the general validity of this equation we applied it as well to the calculation of the 
compressibility factor of systems of the hard heterol1uclear dumbells for which it is 
possible to find both the MC data and vi rial coefficients in the literature. The agree­
ment of the values given by Eq. (5) and the MC data was excellent even in this case. 

The authors thank Dr W. B. Streett, Cornell University, Ithaca, New York and Dr B. C. Freasier, 
Faculty of Military Studies, Dunlroon, Australia, for valuable discussions and for providing some 
of their unpublished simulation results. 

LIST OF SYMBOLS 

L 
B j 

y 

length of the core of a nonspherical molecule 
i-th virial coefficient reduced by an appropriate power of the volume of the ~olecule 
packing fraction 
number-density 

(J' breadth of a molecule 
P/UkT compressibility factor 
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